
University of California, Berkeley
Physics 110A Fall 2001 Section 1 (Strovink)

SOLUTION TO MIDTERM EXAMINATION 1

Directions: Do all 3 problems, which have unequal weight. This is a closed-book closed-note exam
except for one 81

2 × 11 inch sheet containing any information you wish on both sides. A photocopy
of the four inside covers of Griffiths is included with the exam. Calculators are not needed, but you
may use one if you wish. Laptops and palmtops should be turned off. Use a bluebook. Do not use
scratch paper – otherwise you risk losing part credit. Cross out rather than erase any work that
you wish the grader to ignore. Justify what you do. Express your answer in terms of the quantities
specified in the problem. Box or circle your answer.

Problem 1. (45 points)
A surface charge of uniform density σ0 Coul/m2

is glued onto a spherical shell of radius R that is
centered at the origin.
(a) (10 points)
Relative to ∞, find the potential V0 at the ori-
gin.
Solution:
This part of the problem is spherically symmet-
ric. Outside the shell, the potential is that of a
point charge. Inside the shell, there is no charge,
so the potential there is the same as at the shell’s
surface. Therefore

4πε0V0 =
q

R

=
4πR2σ0

R

V0 =
σ0R

ε0
.

(b) (5 points)
How much work W was done to move the charge
from ∞ to the shell?
Solution:

W = 1
2

∫
dτ ′ρ(r′)V (r′)

= 1
2qV (R)

= 1
24πR2σ0

σ0R

ε0

W =
2πR3σ2

0

ε0
.

(c) (10 points)
The shell is now split along its “equator” into two

hemispheres, and the south hemisphere is thrown
away. Find the new potential V1/2 at the origin.
Solution:
We could have obtained the answer to (a) by
doing the integral

4πε0V0 =
∫

dτ ′ ρ(r
′)

r′
.

Now, with half of the shell removed, the integral
is half as big. Therefore

V1/2 =
V0

2
=

σ0R

2ε0
.

(d) (20 points)
For the conditions of part (c), calculate the po-
tential VN at the “north pole” (0, 0, R).
Solution:
Now we need actually to do an integral. Con-
sider a ring dθ′ of charge, where θ′ is the angle
measured from the north pole. This ring has
area da′ = 2πR2 sin θ′dθ′ and is located a dis-
tance r′ = 2R sin θ′

2 from the north pole. The
contribution from this ring to the potential at
the north pole is

4πε0 dVN =
σ0da′

r′

=
σ02πR2 sin θ′

2R sin θ
2

dθ′

=
πRσ0 sin θ′

sin θ′
2

dθ′ .



Substituting

sin θ′ = sin ( θ′
2 + θ′

2 )

= 2 sin θ′
2 cos θ′

2 ,

we have

4πε0 dVN =
πRσ02 sin θ′

2 cos θ′
2

sin θ′
2

dθ′

= 2πRσ0 cos θ′
2 2d

θ′
2 .

Integrating over 0 < θ′ < π
2 ,

4πε0VN = 4πRσ0

∫ π/4

0

cos θ
2d θ

2

= 4πRσ0 sin π
4

VN =
σ0R√
2ε0

.

As a check, if we had integrated θ′ all the way
to π, including both hemispheres, we would have
recovered the answer to (a).

Problem 2. (25 points)
A point charge q is held at a distance z above
an infinite conducting plane that is grounded
(V = 0). Calculate the surface charge density
σs on the plane at a distance s � z from the
charge. Accuracy to lowest nonvanishing order
in z/s is sufficient.
Solution:
For z > 0, the effect of the charge that is in-
duced on the conducting plane is the same as
that of an image charge −q a distance z below
the plane. Together the physical charge and the
image charge form a physical dipole with mo-
ment p = ẑq2z. At a cylindrical radius s � z,
the field of the physical dipole is approximately
the same as that of an ideal dipole:

4πε0r
3

p
E = 3r̂(r̂ · p̂)− p̂

= 3ŝ(ŝ · ẑ = 0)− ẑ

4πε0E = −ẑ
2qz
s3

.

The surface charge density on the conductor is
just ε0Ez, so

σs = − qz

2πs3
.

Apart from factors of order unity, the answer
−qz/s3 could be guessed. Since a dipole is in-
volved, the result must be proportional to its
moment and thus to z. Given that, −qz/s3 is
the only acceptable combination of the available
variables that has the dimensions of a surface
charge density. This argument is worth some
part credit.

This problem could also be approached by con-
sidering separately the electric fields from the
physical and image charges, expanding them in
powers of z/s, and retaining the leading terms
that do not cancel. If you attempted to do this
and fouled it up, you shouldn’t expect excessive
part credit, as such an approach doesn’t require
excessive physical insight.



Problem 3. (30 points)
A thin phonograph record is composed of a ma-
terial that has a uniform volume charge density;
the total charge is Q. The record has radius R
and rotates on a turntable at angular velocity �ω.
Calculate the magnetic field at the center of the
record.
Solution:
Again we need to do an integral. Define ẑ ≡ ω̂
and s to be the (cylindrical) radius. Consider
an element ds of the record, located a distance s
from its center. The charge dQ on this element is

dQ = Q
2πs ds

πR2

=
2Qs

R2
ds .

This charge rotates once every 2π/ω seconds, so
the element carries a current

dI =
ω

2π
2Qs

R2
ds

=
ωQs

πR2
ds .

When one applies the Biot-Savart law, one finds
that a circular loop of current I0 and radius s0

has a central field equal to µ0I0/2s0. Therefore
the contribution of the record element ds to the
central magnetic field is

dB = ẑ
µ0

2s
dI

= ẑ
µ0

2s
ωQs

πR2
ds

= ẑ
µ0ωQ

2πR2
ds

B = ẑ
µ0ωQ

2πR2

∫ R

0

ds

B = ω̂
µ0ωQ

2πR
.


